Terahertz Security Image Quality Assessment by No-reference Model Observers
نویسندگان
چکیده
To provide the possibility of developing objective image quality assessment (IQA) algorithms for THz security images, we constructed the THz security image database (THSID) including a total of 181 THz security images with the resolution of 127×380. The main distortion types in THz security images were first analyzed for the design of subjective evaluation criteria to acquire the mean opinion scores. Subsequently, the existing no-reference IQA algorithms, which were 5 opinion-aware approaches viz., NFERM, GMLF, DIIVINE, BRISQUE and BLIINDS2, and 8 opinion-unaware approaches viz., QAC, SISBLIM, NIQE, FISBLIM, CPBD, S3 and Fish_bb, were executed for the evaluation of the THz security image quality. The statistical results demonstrated the superiority of Fish_bb over the other testing IQA approaches for assessing the THz image quality with PLCC (SROCC) values of 0.8925 (-0.8706), and with RMSE value of 0.3993. The linear regression analysis and Bland-Altman plot further verified that the Fish__bb could substitute for the subjective IQA. Nonetheless, for the classification of THz security images, we tended to use S3 as a criterion for ranking THz security image grades because of the relatively low false positive rate in classifying bad THz image quality into acceptable category (24.69%). Interestingly, due to the specific property of THz image, the average pixel intensity gave the best performance than the above complicated IQA algorithms, with the PLCC, SROCC and RMSE of 0.9001, -0.8800 and 0.3857, respectively. This study will help the users such as researchers or security staffs to obtain the THz security images of good quality. Currently, our research group is attempting to make this research more comprehensive.
منابع مشابه
No-reference perceptual quality assessment of JPEG compressed images
Human observers can easily assess the quality of a distorted image without examining the original image as a reference. By contrast, designing objective No-Reference (NR) quality measurement algorithms is a very difficult task. Currently, NR quality assessment is feasible only when prior knowledge about the types of image distortion is available. This research aims to develop NR quality measure...
متن کاملA Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources
The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...
متن کاملReduced-Reference Image Quality Assessment based on saliency region extraction
In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...
متن کاملNo-Reference Video Quality Assessment
Methods to assess the visual quality of digital videos as perceived by human observers are becoming important, due to large number of applications that target humans as the end users of video. In this paper a no-reference video quality assessment (VQA) algorithm is introduced. Characteristics of human visual system (HVS) is taken into considerations. The quality of video is calculated in compre...
متن کاملSubjective and Objective Quality Evaluation of Lightly Distorted Synthetic Images
Measuring visual quality, as perceived by human observers, is becoming increasingly important in a large number of applications in which humans are the ultimate consumers of visual information. To aid in the developing of objective image quality assessment (IQA) algorithms, many natural image databases have been developed that contain the subjective ratings of the images by human observers. Sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.03574 شماره
صفحات -
تاریخ انتشار 2017